A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging.
نویسندگان
چکیده
Pitch, one of the primary auditory percepts, is related to the temporal regularity or periodicity of a sound. Previous functional brain imaging work in humans has shown that the level of population neural activity in centers throughout the auditory system is related to the temporal regularity of a sound, suggesting a possible relationship to pitch. In the current study, functional magnetic resonance imaging was used to measure activation in response to harmonic tone complexes whose temporal regularity was identical, but whose pitch salience (or perceptual pitch strength) differed, across conditions. Cochlear nucleus, inferior colliculus, and primary auditory cortex did not show significant differences in activation level between conditions. Instead, a correlate of pitch salience was found in the neural activity levels of a small, spatially localized region of nonprimary auditory cortex, overlapping the anterolateral end of Heschl's gyrus. The present data contribute to converging evidence that anterior areas of nonprimary auditory cortex play an important role in processing pitch.
منابع مشابه
Differential Rates of Perinatal Maturation of Human Primary and Nonprimary Auditory Cortex
Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation...
متن کاملThe effect of stimulus context on pitch representations in the human auditory cortex
Neuroimaging studies of pitch coding seek to identify pitch-related responses separate from responses to other properties of the stimulus, such as its energy onset, and other general aspects of the listening context. The current study reports the first attempt to evaluate these modulatory influences using functional magnetic resonance imaging (fMRI) measures of cortical pitch representations. S...
متن کاملRepeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملActivity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues.
Streaming is a perceptual mechanism by which the brain segregates information from multiple sound sources in our environment and assigns them to distinct auditory streams. Examples for streaming cues are differences in frequency spectrum, pitch, or space, and potential neural correlates for streaming based on spectral and pitch cues have been identified in the auditory cortex. Here, magnetoence...
متن کاملRepresentations of pitch and slow modulation in auditory cortex
Iterated ripple noise (IRN) is a type of pitch-evoking stimulus that is commonly used in neuroimaging studies of pitch processing. When contrasted with a spectrally matched Gaussian noise, it is known to produce a consistent response in a region of auditory cortex that includes an area antero-lateral to the primary auditory fields (lateral Heschl's gyrus). The IRN-related response has often bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 30 شماره
صفحات -
تاریخ انتشار 2004